Vascular Functional Effect Mechanisms of Elabela in Rat Thoracic Aorta

Published:April 22, 2022DOI:


      Elabela is a recently discovered peptide hormone. The present study aims to investigate the vasorelaxant effect mechanisms of elabela in the rat thoracic aorta.


      The vascular rings obtained from the thoracic aortas of the male Wistar albino rats were placed in the isolated tissue bath system. Resting tension was set to 1 gram. After the equilibration period, the vessel rings were contracted with phenylephrine or potassium chloride. Once a stable contraction was achieved, elabela-32 was applied cumulatively (10−9–10−6 molar) to the vascular rings. The experimental protocol was repeated in the presence of specific signaling pathway inhibitors or potassium channel blockers to determine the effect mechanisms of elabela.


      Elabela showed a significant vasorelaxant effect in a concentration-dependent manner (P < 0.001). The vasorelaxant effect level of elabela was significantly reduced by the apelin receptor antagonist F13A, cyclooxygenase inhibitor indomethacin, adenosine monophosphate-activated protein kinase inhibitor dorsomorphin, protein kinase C inhibitor bisindolmaleimide, large-conductance calcium-activated potassium channel blocker iberiotoxin, and intermediate-conductance calcium-activated potassium channel blocker TRAM-34 (P < 0.001). However, the vasorelaxant effect level of elabela was not significantly affected by the endothelial nitric oxide synthase inhibitor nitro-L-arginine methyl ester and mitogen-activated protein kinase inhibitor U0126.


      Elabela exhibits a prominent vasodilator effect in rat thoracic aorta. Apelin receptor, prostanoids, adenosine monophosphate-activated protein kinase, protein kinase C, and calcium-activated potassium channels are involved in the vasorelaxant effect mechanisms of elabela.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Annals of Vascular Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Chng S.C.
        • Ho L.
        • Tian J.
        • et al.
        ELABELA: a hormone essential for heart development signals via the apelin receptor.
        Dev Cell. 2013; 27: 672-680
        • Pauli A.
        • Norris M.L.
        • Valen E.
        • et al.
        Toddler: an embryonic signal that promotes cell movement via apelin receptors.
        Science. 2014; 343: 1248636
        • Read C.
        • Nyimanu D.
        • Williams T.L.
        • et al.
        International union of basic and clinical pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand.
        Pharmacol Rev. 2019; 71: 467-502
        • Zhang Y.
        • Wang Y.
        • Lou Y.
        • et al.
        Elabela, a newly discovered APJ ligand: similarities and differences with apelin.
        Peptides. 2018; 109: 23-32
        • Perjés Á.
        • Kilpiö T.
        • Ulvila J.
        • et al.
        Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart.
        Basic Res Cardiol. 2016; 111: 2
        • Wang Z.
        • Yu D.
        • Wang M.
        • et al.
        Elabela-apelin receptor signaling pathway is functional in mammalian systems.
        Sci Rep. 2015; 5: 8170
        • Mughal A.
        • Sun C.
        • O'Rourke S.T.
        Activation of large-conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries.
        J Pharmacol Exp Ther. 2018; 366: 265-273
        • Sahinturk S.
        • Demirel S.
        • Ozyener F.
        • et al.
        [Pyr1]apelin-13 relaxes the rat thoracic aorta via APJ, NO, AMPK, and potassium channels.
        Gen Physiol Biophys. 2021; 40: 427-434
        • Gurzu B.
        • Petrescu B.C.
        • Costuleanu M.
        • et al.
        Interactions between apelin and angiotensin II on rat portal vein.
        J Renin Angiotensin Aldosterone Syst. 2006; 7: 212-216
        • Salcedo A.
        • Garijo J.
        • Monge L.
        • et al.
        Apelin effects in human splanchnic arteries. Role of nitric oxide and prostanoids.
        Regul Pept. 2007; 144: 50-55
        • Japp A.G.
        • Cruden N.L.
        • Amer D.A.
        • et al.
        Vascular effects of apelin in vivo in man.
        J Am Coll Cardiol. 2008; 52: 908-913
        • Maguire J.J.
        • Kleinz M.J.
        • Pitkin S.L.
        • et al.
        [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease.
        Hypertension. 2009; 54: 598-604
        • Andersen C.U.
        • Markvardsen L.H.
        • Hilberg O.
        • et al.
        Pulmonary apelin levels and effects in rats with hypoxic pulmonary hypertension.
        Respir Med. 2009; 103: 1663-1671
        • Huang P.
        • Fan X.F.
        • Pan L.X.
        • et al.
        Effect of apelin on vasodilatation of isolated pulmonary arteries in rats is concerned with the nitric oxide pathway.
        Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2011; 27: 1-5
        • Sahinturk S.
        • Isbil N.
        The role of potassium channels on vasorelaxant effects of elabela in rat thoracic aorta.
        Turk Gogus Kalp Dama. 2022; 30: 18-25
        • Demirel S.
        • Sahinturk S.
        • Isbil N.
        • et al.
        Irisin relaxes rat thoracic aorta through activating signaling pathways implicating protein kinase C.
        Turk J Med Sci. 2022; 52: 514-521
        • Demirel S.
        • Sahinturk S.
        • Isbil N.
        • et al.
        Physiological role of K+ channels in irisin-induced vasodilation in rat thoracic aorta.
        Peptides. 2022; 147: 170685
        • Panthiya L.
        • Pantan R.
        • Tocharus J.
        • et al.
        Endothelium-dependent and endothelium-independent vasorelaxant effects of tiliacorinine 12′-O-acetate and mechanisms on isolated rat aorta.
        Biomed Pharmacother. 2019; 109: 2090-2099
        • Roberts R.E.
        The role of Rho-kinase and extracellular regulated kinase-mitogen-activated protein kinase in α2-adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein.
        J Pharmacol Exp Ther. 2004; 311: 742-747
        • Dessy C.
        • Kim I.
        • Sougnez C.L.
        • et al.
        A role for MAP kinase in differentiated smooth muscle contraction evoked by α-adrenoceptor stimulation.
        Am J Phys. 1998; 1275: 1081-1086
        • Roberts R.E.
        Role of the extracellular signal-regulated kinase (ERK) signal transduction cascade in α2-adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein.
        Br J Pharmacol. 2001; 133: 859-866
        • Félétou M.
        • Huang Y.
        • Vanhoutte P.M.
        Endothelium-mediated control of vascular tone: COX-1 and COX-2 products.
        Br J Pharmacol. 2011; 164: 894-912
        • Enkhjargal B.
        • Godo S.
        • Sawada A.
        • et al.
        Endothelial AMP-activated protein kinase regulates blood pressure and coronary flow responses through hyperpolarization mechanism in mice.
        Arterioscler Thromb Vasc Biol. 2014; 34: 1505-1513
        • Ford R.J.
        • Teschke S.R.
        • Reid E.B.
        • et al.
        AMP-activated protein kinase activator AICAR acutely lowers blood pressure and relaxes isolated resistance arteries of hypertensive rats.
        J Hypertens. 2012; 30: 725-733
        • Schneider H.
        • Schubert K.M.
        • Blodow S.
        • et al.
        AMPK dilates resistance arteries via activation of SERCA and BKCa channels in smooth muscle.
        Hypertension. 2015; 66: 108-116
        • Goirand F.
        • Solar M.
        • Athea Y.
        • et al.
        Activation of AMP kinase alpha1 subunit induces aortic vasorelaxation in mice.
        J Physiol. 2007; 581: 1163-1171
        • Wang Y.
        • Zhou H.
        • Wu B.
        • et al.
        Protein kinase C isoforms distinctly regulate propofol-induced endothelium-dependent and endothelium-independent vasodilation.
        J Cardiovasc Pharmacol. 2015; 66: 276-284
        • Perjes A.
        • Skoumal R.
        • Tenhunen O.
        • et al.
        Apelin increases cardiac contractility via protein kinase C epsilon- and extracellular signal-regulated kinase-dependent mechanisms.
        PLoS One. 2014; 9: e93473
        • Tykocki N.R.
        • Boerman E.M.
        • Jackson W.F.
        Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles.
        Comprehens Physiol. 2017; 7: 485-581
        • Zhou M.
        • Wu Y.
        Effects and signaling pathways of elabela in the cardiovascular system.
        Peptides. 2022; 147: 170674
        • Zhou S.
        • Wang J.
        • Wang Q.
        • et al.
        Essential role of the ELABELA-APJ signaling pathway in cardiovascular system development and diseases.
        Cardiovasc Pharmacol. 2020; 75: 284-291
        • Ma Z.
        • Song J.-J.
        • Martin S.
        • et al.
        The Elabela-APJ axis: a promising therapeutic target for heart failure.
        Heart Fail Rev. 2021; 26: 1249-1258
        • Marsault E.
        • Llorens-Cortes C.
        • Iturrioz X.
        • et al.
        The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders.
        Ann NY Acad Sci. 2019; 1455: 12-33
        • Chapman F.A.
        • Nyimanu D.
        • Maguire J.J.
        • et al.
        The therapeutic potential of apelin in kidney disease.
        Nat Rev Nephrol. 2021; 17: 840-853
        • Alfaras I.
        • Di Germanio C.
        • Bernier M.
        • et al.
        Pharmacological strategies to retard cardiovascular aging.
        Circ Res. 2016; 118: 1626-1642
        • Miller L.W.
        Heart failure: who we treat versus who we study.
        Cardiol Clin. 2008; 26: 113-125
        • Yang P.
        • Read C.
        • Kuc R.E.
        • et al.
        Elabela/toddler is an endogenous agonist of the apelin APJ receptor in the adult cardiovascular system, and exogenous administration of the peptide compensates for the downregulation of its expression in pulmonary arterial hypertension.
        Circulation. 2017; 135: 1160-1173
        • NCD Risk Factor Collaboration
        Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants.
        Lancet. 2017; 389: 37-55
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • et al.
        Heart disease and stroke statistics-2019 update: a report from the American Heart Association.
        Circulation. 2019; 139: e56-e66
        • Calhoun D.A.
        • Jones D.
        • Textor S.
        • et al.
        Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for high blood pressure research.
        Circulation. 2008; 117: e510-e526
        • Li Y.
        • Yang X.
        • Ouyang S.
        • et al.
        Declined circulating elabela levels in patients with essential hypertension and its association with impaired vascular function: a preliminary study.
        Clin Exp Hypertens. 2020; 42: 239-243
        • Yang T.
        • Xu C.
        Physiology and pathophysiology of the intrarenal renin–angiotensin system: an update.
        J Am Soc Nephrol. 2017; 28: 1040-1049
        • Xu C.
        • Wang F.
        • Chen Y.
        • et al.
        ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury.
        Am J Physiol Ren Physiol. 2020; 318: F1122-F1135
        • Sainsily X.
        • Coquerel D.
        • Giguère H.
        • et al.
        Elabela protects spontaneously hypertensive rats from hypertension and cardiorenal dysfunctions exacerbated by dietary high-salt intake.
        Front Pharmacol. 2021; 12: 709467
        • Sato T.
        • Sato C.
        • Kadowaki A.
        • et al.
        ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage.
        Cardiovasc Res. 2017; 113: 760-769
        • Schreiber C.A.
        • Holditch S.J.
        • Generous A.
        • et al.
        Sustained ELABELA gene therapy in high-salt diet-induced hypertensive rats.
        Curr Gene Ther. 2017; 16: 349-360
        • Xu C.
        The Elabela in hypertension, cardiovascular disease, renal disease, and preeclampsia: an update.
        J Hypertens. 2021; 39: 12-22
        • Ho L.N.
        • van Dijk M.
        • Chye S.T.J.
        • et al.
        ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice.
        Science. 2017; 357: 707-713
        • Zhou L.
        • Sun H.
        • Cheng R.
        • et al.
        ELABELA, as a potential diagnostic biomarker of preeclampsia, regulates abnormally shallow placentation via APJ.
        Am J Physiol Endocrinol Metab. 2019; 316: E773-E781
        • Wang L.J.
        • Zhang Y.
        • Qu H.M.
        • et al.
        Reduced ELABELA expression attenuates trophoblast invasion through the PI3K/AKT/mTOR pathway in early onset preeclampsia.
        Placenta. 2019; 87: 38-45
        • Wang X.
        • Liang G.
        • Guo Q.
        • et al.
        ELABELA improves endothelial cell function via the ELA-APJ axis by activating the PI3K/Akt signalling pathway in HUVECs and EA.hy926 cells.
        Clin Exp Pharmacol Physiol. 2020; 47: 1953-1964
        • Heusch G.
        Myocardial ischaemia–reperfusion injury and cardioprotection in perspective.
        Nat Rev Cardiol. 2020; 17: 773-789
        • Yu P.
        • Ma S.
        • Dai X.
        • et al.
        Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling.
        Am J Transl Res. 2020; 12: 4467-4477
        • Jin L.
        • Pan Y.
        • Li Q.
        • et al.
        Elabela gene therapy promotes angiogenesis after myocardial infarction.
        J Cell Mol Med. 2021; 25: 8537-8545
        • Du S.-L.
        • Yang X.-C.
        • Zhong J.-C.
        • et al.
        Plasma levels of elabela are associated with coronary angiographic severity in patients with acute coronary syndrome.
        J Geriatr Cardiol. 2020; 17: 674-679
        • Yavuz F.
        • Kaplan M.
        Association between serum elabela levels and chronic totally occlusion in patients with stable angina pectoris.
        Arq Bras Cardiol. 2021; 117: 503-510
        • Li C.
        • Cheng H.
        • Adhikari B.K.
        • et al.
        The role of apelin–APJ system in diabetes and obesity.
        Front Endocrinol (Lausanne). 2022; 13: 820002
        • Onalan E.
        • Doğan Y.
        • Onalan E.
        • et al.
        Elabela levels in patients with type 2 diabetes: can itbe a marker for diabetic nephropathy?.
        Afr Health Sci. 2020; 20: 833-840
        • Zhang H.
        • Gong D.
        • Ni L.
        • et al.
        Serum elabela/toddler levels are associated with albuminuria in patients with type 2 diabetes.
        Cell Physiol Biochem. 2018; 48: 1347-1354
        • Guo Y.-Y.
        • Li T.
        • Liu H.
        • et al.
        Circulating levels of Elabela and Apelin in the second and third trimesters of pregnancies with gestational diabetes mellitus.
        Gynecol Endocrinol. 2020; 36: 890-894
        • Zhang Y.
        • Wang Y.
        • Luo M.
        • et al.
        Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway.
        Peptides. 2019; 114: 29-37
        • Coquerel D.
        • Chagnon F.
        • Sainsily X.
        • et al.
        ELABELA improves cardio-renal Outcome in fatal experimental septic shock.
        Crit Care Med. 2017; 45: e1139-e1148
        • Kaplan M.
        • Yavuz F.
        • Kaplan G.I.
        • et al.
        Elabela as a novel marker: well-correlated with WIfI amputation risk score in lower extremity arterial disease patients.
        Anatol J Cardiol. 2021; 25: 330-337
        • Liang D.
        • Han D.
        • Fan W.
        • et al.
        Therapeutic efficacy of apelin on transplanted mesenchymal stem cells in hindlimb ischemic mice via regulation of autophagy.
        Sci Rep. 2016; 621914
        • Chen X.
        • Zhou C.
        • Xu D.
        • et al.
        Peptide hormone ELABELA promotes rat bone marrow-derived mesenchymal stem cell proliferation and migration by manipulating the cell cycle through the PI3K/AKT pathway under the hypoxia and ischemia microenvironment.
        Stem Cell Res Ther. 2022; 13: 32
        • Leeper N.J.
        • Tedesco M.M.
        • Kojima Y.
        • et al.
        Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation.
        Am J Physiol Heart Circ Physiol. 2009; 296: H1329-H1335
        • Adam F.
        • Khatib A.M.
        • Lopez J.J.
        • et al.
        Apelin: an antithrombotic factor that inhibits platelet function.
        Blood. 2016; 127: 908-920
        • Liu D.R.
        • Hu W.
        • Chen G.Z.
        Apelin-12 exerts neuroprotective effect against ischemia-reperfusion injury by inhibiting JNK and P38MAPK signaling pathway in mouse.
        Eur Rev Med Pharmacol Sci. 2018; 22: 3888-3895
        • Duan J.
        • Cui J.
        • Yang Z.
        • et al.
        Neuroprotective effect of apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling.
        J Neuroinflammation. 2019; 16: 24
        • Shao Z.-Q.
        • Dou S.-S.
        • Zhu J.-G.
        • et al.
        Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury.
        Neural Regen Res. 2021; 16: 1044-1051
        • Feng X.
        • Man W.
        • Xuehong L.
        • et al.
        Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: mediation of anti-apoptotic effect via Akt phosphorylation.
        Peptides. 2022; 147: 170682
        • Wang C.
        • Xiong M.
        • Yang C.
        • et al.
        PEGylated and acylated elabela analogues show enhanced receptor binding, prolonged stability, and remedy of acute kidney injury.
        J Med Chem. 2020; 63: 16028-16042
        • Chen H.
        • Wang L.
        • Wang W.
        • et al.
        ELABELA and an ELABELA fragment protect against AKI.
        J Am Soc Nephrol. 2017; 28: 2694-2707