Advertisement
Clinical Research|Articles in Press

A novel pre-operative risk assessment tool to identify patients at risk of contrast associated acute kidney injury after endovascular abdominal aortic aneurysm repair

Published:February 28, 2023DOI:https://doi.org/10.1016/j.avsg.2023.02.017

      Highlights

      • Patients undergoing elective EVAR are at risk of contrast associated acute kidney injury (CA-AKI)
      • Patients with decreased renal function (GFR < 30 ml/min) are at higher risk of CA-AKI after EVAR
      • Patients with a maximum AAA diameter above 6.9 cm are at higher risk of CA-AKI after EVAR
      • Female patients regardless of maximum AAA diameter are at higher risk of CA-AKI after EVAR

      Abstract

      Objectives

      Contrast-associated acute kidney injury (CA-AKI) after endovascular abdominal aortic aneurysm repair (EVAR) is associated with mortality and morbidity. Risk stratification remains a vital component of preoperative evaluation. We sought to generate and validate a pre-procedure CA-AKI risk stratification tool for elective EVAR patients.

      Methods

      We queried the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) database for elective EVAR patients and excluded those on dialysis, with a history of renal transplant, death during procedure, and without creatinine measures. Association with CA-AKI (rise in creatinine > 0.5 mg/dL) was tested using mixed effects logistic regression. Variables associated with CA-AKI were used to generate a predictive model via a single classification tree. The variables selected by the classification tree were then validated by fitting a mixed effects logistic regression model into the Vascular Quality Initiative (VQI) dataset.

      Results

      Our derivation cohort included 7,043 patients, 3.5% of whom developed CA-AKI. After multivariate analysis, age (OR 1.021, 95% CI 1.004-1.040), female sex (OR 1.393, CI 1.012-1.916), GFR < 30 ml/min (OR 5.068, CI 3.255-7.891), current smoking (OR 1.942, CI 1.067-3.535), COPD (OR 1.402, CI 1.066-1.843), maximum AAA diameter (OR 1.018, CI 1.006-1.029), and presence of iliac artery aneurysm (OR 1.352, CI 1.007-1.816) were associated with increased odds of CA-AKI. Our risk prediction calculator demonstrated that patients with a GFR <30 ml/min, females, and patients with a maximum AAA diameter of > 6.9 cm are at higher risk of CA-AKI after EVAR. Using the VQI dataset (N = 62,986), we found that GFR <30 ml/min (OR 4.668, CI 4.007-5.85), female sex (OR 1.352, CI 1.213-1.507), and maximum AAA diameter > 6.9 cm (OR 1.824, CI 1.212-1.506) were associated with increased risk of CA-AKI after EVAR.

      Conclusions

      Herein, we present a simple and novel risk assessment tool that can be used pre-operatively to identify patients at risk of CA-AKI after EVAR. Patients with a GFR < 30 ml/min, maximum AAA diameter > 6.9 cm, and females who are undergoing EVAR may be at risk for CA-AKI after EVAR. Prospective studies are needed to determine the efficacy of our model.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Annals of Vascular Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References:

        • Saratzis A
        • Melas N
        • Mahmood A
        • Sarafidis P
        Incidence of Acute Kidney Injury (AKI) after Endovascular Abdominal Aortic Aneurysm Repair (EVAR) and Impact on Outcome.
        Eur J Vasc Endovasc Surg. 2015; 49: 534-540https://doi.org/10.1016/j.ejvs.2015.01.002
        • Saratzis A
        • Nduwayo S
        • Sarafidis P
        • Sayers RD
        • Bown MJ
        Renal Function is the Main Predictor of Acute Kidney Injury after Endovascular Abdominal Aortic Aneurysm Repair.
        Ann Vasc Surg. 2016; 31: 52-59https://doi.org/10.1016/j.avsg.2015.10.010
        • Lee J
        • Park KM
        • Jung S
        • Cho W
        • Hong KC
        • Jeon YS
        • et al.
        Occurrences and Results of Acute Kidney Injury after Endovascular Aortic Abdominal Repair.
        Vasc Specialist Int. 2017; 33: 135-139https://doi.org/10.5758/vsi.2017.33.4.135
        • Cheng EL
        • Hong Q
        • Yong E
        • Chandrasekar S
        • Tan GWL
        • Lo ZJ
        Validating the use of contrast-induced nephropathy prediction models in endovascular aneurysm repairs.
        J Vasc Surg. 2020; 71: 1546-1553https://doi.org/10.1016/j.jvs.2019.07.093
        • Carpenter J
        Endovascular AAA repair in patients with renal insufficiency: strategies for reducing adverse renal events.
        Cardiovasc Surg. 2001; 9: 559-564https://doi.org/10.1016/S0967-2109(01)00085-0
        • Nguyen BN
        • Neville RF
        • Rahbar R
        • Amdur R
        • Sidawy AN
        Comparison of Outcomes for Open Abdominal Aortic Aneurysm Repair and Endovascular Repair in Patients With Chronic Renal Insufficiency.
        Ann Surg. 2013; 258: 394-399https://doi.org/10.1097/SLA.0b013e3182a15ada
        • Khwaja A
        KDIGO Clinical Practice Guidelines for Acute Kidney Injury.
        Nephron Clin Pract. 2012; 120: c179-c184https://doi.org/10.1159/000339789
        • McDonald JS
        • McDonald RJ
        • Comin J
        • Williamson EE
        • Katzberg RW
        • Murad MH
        • et al.
        Frequency of Acute Kidney Injury Following Intravenous Contrast Medium Administration: A Systematic Review and Meta-Analysis.
        Radiology. 2013; 267: 119-128https://doi.org/10.1148/radiol.12121460
      1. American College of Radiology. Manual on Contrast Media. Version 10.3. Reston, VA: American College of Radiology. Published online 2018.

        • Newhouse JH
        • Kho D
        • Rao QA
        • Starren J
        Frequency of Serum Creatinine Changes in the Absence of Iodinated Contrast Material: Implications for Studies of Contrast Nephrotoxicity.
        Am J Roentgenol. 2008; 191: 376-382https://doi.org/10.2214/AJR.07.3280
        • Wong GTC
        • Lee EYP
        • Irwin MG
        Contrast induced nephropathy in vascular surgery.
        Br J Anaesth. 2016; 117: ii63-ii73https://doi.org/10.1093/bja/aew213
        • Van Eps RGS
        • Nemeth B
        • Mairuhu RTA
        • Wever JJ
        • Veger HTC
        • van Overhagen H
        • et al.
        Determinants of Acute Kidney Injury and Renal Function Decline After Endovascular Abdominal Aortic Aneurysm Repair.
        Eur J Vasc Endovasc Surg. 2017; 54: 712-720https://doi.org/10.1016/j.ejvs.2017.09.011
        • Lee JT
        • Varu VN
        • Tran K
        • Dalman RL
        Renal function changes after snorkel/chimney repair of juxtarenal aneurysms.
        J Vasc Surg. 2014; 60: 563-570https://doi.org/10.1016/j.jvs.2014.03.239
        • Mehran R
        • Aymong ED
        • Nikolsky E
        • Lasic Z
        • Iakovou I
        • Fahy M
        • et al.
        A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention.
        J Am Coll Cardiol. 2004; 44: 1393-1399https://doi.org/10.1016/j.jacc.2004.06.068
        • McCullough PA
        • Wolyn R
        • Rocher LL
        • Levin RN
        • O’Neill WW
        Acute Renal Failure After Coronary Intervention.
        Am J Med. 1997; 103: 368-375https://doi.org/10.1016/S0002-9343(97)00150-2
        • Stacul F
        • van der Molen AJ
        • Reimer P
        • Webb JAW
        • Thomsen HS
        • Morcos SK
        • et al.
        Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines on on behalf of the Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR).
        Eur Radiol. 2011; 21: 2527-2541https://doi.org/10.1007/s00330-011-2225-0
        • Saratzis A
        • Joshi S
        • Benson RA
        • Bosanquet D
        • Dattani N
        • Batchelder A
        • et al.
        Editor’s Choice - Acute Kidney Injury (AKI) in Aortic Intervention: Findings From the Midlands Aortic Renal Injury (MARI) Cohort Study.
        Eur J Vasc Endovasc Surg. 2020; 59: 899-909https://doi.org/10.1016/j.ejvs.2019.09.508
        • Comfere T
        • Sprung J
        • Kumar MM
        • Draper M
        • Wilson DP
        • Williams BA
        • et al.
        Angiotensin System Inhibitors in a General Surgical Population.
        Anesth Analg. 2005; 100: 636-644https://doi.org/10.1213/01.ANE.0000146521.68059.A1
        • Kellum JA
        • Lameire N
        • for the KDIGO AKI Guideline Work Group
        Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1).
        Crit Care. 2013; 17: 204https://doi.org/10.1186/cc11454
        • Rihal CS
        • Textor SC
        • Grill DE
        • Berger PB
        • Ting HH
        • Best PJ
        • et al.
        Incidence and Prognostic Importance of Acute Renal Failure After Percutaneous Coronary Intervention.
        Circulation. 2002; 105: 2259-2264https://doi.org/10.1161/01.CIR.0000016043.87291.33
        • Bartholomew BA
        • Harjai KJ
        • Dukkipati S
        • Boura JA
        • Yerkey MW
        • Glazier S
        • et al.
        Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification.
        Am J Cardiol. 2004; 93: 1515-1519https://doi.org/10.1016/j.amjcard.2004.03.008
        • Chen YL
        • Fu NK
        • Xu J
        • Yang SC
        • Li S
        • Liu YY
        • et al.
        A simple preprocedural score for risk of contrast-induced acute kidney injury after percutaneous coronary intervention: Risk of CI-AKI After PCI.
        Catheter Cardiovasc Interv. 2014; 83: E8-E16https://doi.org/10.1002/ccd.25109
        • Fu N
        • Li X
        • Yang S
        • Chen Y
        • Li Q
        • Jin D
        • et al.
        Risk Score for the Prediction of Contrast-Induced Nephropathy in Elderly Patients Undergoing Percutaneous Coronary Intervention.
        Angiology. 2013; 64: 188-194https://doi.org/10.1177/0003319712467224
        • Gao YM
        • Li D
        • Cheng H
        • Chen YP
        Derivation and validation of a risk score for contrast-induced nephropathy after cardiac catheterization in Chinese patients.
        Clin Exp Nephrol. 2014; 18: 892-898https://doi.org/10.1007/s10157-014-0942-9
        • Liu Y
        • Liu YH
        • Tan N
        • Chen JY
        • Zhou YL
        • Duan CY
        • et al.
        Novel risk scoring for pre-procedural prediction of contrast-induced nephropathy and poor long-term outcomes among patients with chronic total occlusion undergoing percutaneous coronary intervention.
        Eur Heart J. 2015; 17: C34-C41https://doi.org/10.1093/eurheartj/suv042
        • Maioli M
        • Toso A
        • Gallopin M
        • Leoncini M
        • Tedeschi D
        • Micheletti C
        • et al.
        Preprocedural score for risk of contrast-induced nephropathy in elective coronary angiography and intervention.
        J Cardiovasc Med. 2010; 11: 444-449https://doi.org/10.2459/JCM.0b013e328335227c
        • Tziakas D
        • Chalikias G
        • Stakos D
        • Apostolakis S
        • Adina T
        • Kikas P
        • et al.
        Development of an easily applicable risk score model for contrast-induced nephropathy prediction after percutaneous coronary intervention.
        Int J Cardiol. 2013; 163: 46-55https://doi.org/10.1016/j.ijcard.2011.05.079
        • Renard R
        • Coscas R
        • Sylvestre R
        • Javerliat I
        • Goëau-Brissonnière O
        • Coggia M
        A Simple Technique to Perform Endovascular Repair of Abdominal Aortic Aneurysms with a Very Low Dose of Iodine Contrast Media.
        Ann Vasc Surg. 2021; 71: 507-512https://doi.org/10.1016/j.avsg.2020.09.062
        • Krishnamurthy V
        • Munir K
        • Rectenwald JE
        • Mansour A
        • Hans S
        • Eliason JL
        • et al.
        Contemporary outcomes with percutaneous vascular interventions for peripheral critical limb ischemia in those with and without poly-vascular disease.
        Vasc Med. 2014; 19: 491-499https://doi.org/10.1177/1358863X14552013
        • Ardati AK
        • Kaufman SR
        • Aronow HD
        • Nypaver TJ
        • Bove PG
        • Gurm HS
        • et al.
        The Quality and Impact of Risk Factor Control in Patients With Stable Claudication Presenting for Peripheral Vascular Interventions.
        Circ Cardiovas Interv. 2012; 5: 850-855https://doi.org/10.1161/CIRCINTERVENTIONS.112.975862
        • Mukherjee D
        • Munir K
        • Hirsch AT
        • Chetcuti S
        • Grossman PM
        • Rajagopalan S
        • et al.
        Development of a multicenter peripheral arterial interventional database: The PVD-QI2.
        Am Heart J. 2005; 149: 1003-1008https://doi.org/10.1016/j.ahj.2004.08.015
        • Cronenwett JL
        • Kraiss LW
        • Cambria RP
        The Society for Vascular Surgery Vascular Quality Initiative.
        J Vasc Surg. 2012; 55: 1529-1537https://doi.org/10.1016/j.jvs.2012.03.016
        • Gupta RK
        • Bang TJ
        Prevention of Contrast-Induced Nephropathy (CIN) in Interventional Radiology Practice.
        Semin Intervent Radiol. 2010; 27: 348-359https://doi.org/10.1055/s-0030-1267860
        • Calligaro KD
        • Dandura R
        • Dougherty MJ
        • DeLaurentis DA
        • Raviola CA
        Same-day admissions and other cost-saving strategies for elective aortoiliac surgery.
        J Vasc Surg. 1997; 25: 141-144https://doi.org/10.1016/s0741-5214(97)70330-6
        • Bucher AM
        • De Cecco CN
        • Schoepf UJ
        • Meinel FG
        • Krazinski AW
        • Spearman JV
        • et al.
        Is Contrast Medium Osmolality a Causal Factor for Contrast-Induced Nephropathy?.
        Biomed Res Int. 2014; 2014: 1-8https://doi.org/10.1155/2014/931413
        • Huang Y
        • Gloviczki P
        • Duncan AA
        • Kalra M
        • Oderich GS
        • Fleming MD
        • et al.
        Maximal aortic diameter affects outcome after endovascular repair of abdominal aortic aneurysms.
        J Vasc Surg. 2017; 65: 1313-1322.e4https://doi.org/10.1016/j.jvs.2016.10.093
        • Deery SE
        • Soden PA
        • Zettervall SL
        • Shean KE
        • Bodewes TCF
        • Pothof AB
        • et al.
        Sex differences in mortality and morbidity following repair of intact abdominal aortic aneurysms.
        J Vasc Surg. 2017; 65: 1006-1013https://doi.org/10.1016/j.jvs.2016.08.100
        • Abedi NN
        • Davenport DL
        • Xenos E
        • Sorial E
        • Minion DJ
        • Endean ED
        Gender and 30-day outcome in patients undergoing endovascular aneurysm repair (EVAR): An analysis using the ACS NSQIP dataset.
        J Vasc Surg. 2009; 50: 486-491.e4https://doi.org/10.1016/j.jvs.2009.04.047
        • Chung C
        • Tadros R
        • Torres M
        • Malik R
        • Ellozy S
        • Faries P
        • et al.
        Evolution of gender-related differences in outcomes from two decades of endovascular aneurysm repair.
        J Vasc Surg. 2015; 61: 843-852https://doi.org/10.1016/j.jvs.2014.11.006
        • Lo RC
        • Lu B
        • Fokkema MTM
        • Conrad M
        • Patel VI
        • Fillinger M
        • et al.
        Relative importance of aneurysm diameter and body size for predicting abdominal aortic aneurysm rupture in men and women.
        J Vasc Surg. 2014; 59: 1209-1216https://doi.org/10.1016/j.jvs.2013.10.104
        • Mofidi R
        • Goldie VJ
        • Kelman J
        • Dawson ARW
        • Murie JA
        • Chalmers RTA
        Influence of sex on expansion rate of abdominal aortic aneurysms.
        Br J Surg. 2007; 94: 310-314https://doi.org/10.1002/bjs.5573
        • Lederle FA
        • Wilson SE
        • Johnson GR
        • Reinke DB
        • Littooy FN
        • Acher CW
        • et al.
        Long-Term Outcomes of Immediate Repair Compared with Surveillance of Small Abdominal Aortic Aneurysms.
        N Engl J Med. 2002; 346: 1445-1452https://doi.org/10.1056/NEJMoa013527
        • Barbieri L
        • Verdoia M
        • Nardin M
        • Marino P
        • Suryapranata H
        • De Luca G
        Gender Difference in the Risk of Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography or Percutaneous Coronary Intervention.
        Angiology. 2017; 68: 542-546https://doi.org/10.1177/0003319716669429
        • Sweet MP
        • Fillinger MF
        • Morrison TM
        • Abel D
        The influence of gender and aortic aneurysm size on eligibility for endovascular abdominal aortic aneurysm repair.
        J Vasc Surg. 2011; 54: 931-937https://doi.org/10.1016/j.jvs.2011.02.054
        • Johnston KW
        Influence of sex on the results of abdominal aortic aneurysm repair. Canadian Society for Vascular Surgery Aneurysm Study Group.
        J Vasc Surg. 1994; 20 (discussion 923-926): 914-923https://doi.org/10.1016/0741-5214(94)90228-3
        • Jackson BM
        • Woo EY
        • Bavaria JE
        • Fairman RM
        Gender analysis of the pivotal results of the Medtronic Talent Thoracic Stent Graft System (VALOR) trial.
        J Vasc Surg. 2011; 54 (363.e1): 358-363https://doi.org/10.1016/j.jvs.2010.12.064
        • Hultgren R
        • Vishnevskaya L
        • Wahlgren CM
        Women with abdominal aortic aneurysms have more extensive aortic neck pathology.
        Ann Vasc Surg. 2013; 27: 547-552https://doi.org/10.1016/j.avsg.2012.05.025
        • Mehta M
        • Byrne WJ
        • Robinson H
        • Roddy SP
        • Paty PSK
        • Kreienberg PB
        • et al.
        Women derive less benefit from elective endovascular aneurysm repair than men.
        J Vasc Surg. 2012; 55: 906-913https://doi.org/10.1016/j.jvs.2011.11.047
        • Du Bois D
        • Du Bois EF
        A formula to estimate the approximate surface area if height and weight be known.
        Nutrition. 1989; 5 (discussion 312-313): 303-311
        • Brown R
        • Nath S
        • Lora A
        • Samaha G
        • Elgamal Z
        • Kaiser R
        • et al.
        Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics.
        Respir Res. 2020; 21: 111https://doi.org/10.1186/s12931-020-01381-5
        • Brown R
        • Small DM
        • Doherty DF
        • Holsinger L
        • Booth R
        • Williams R
        • et al.
        Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice.
        Mediators Inflamm. 2021; 20216682657https://doi.org/10.1155/2021/6682657
        • Lalmanach G
        • Saidi A
        • Marchand-Adam S
        • Lecaille F
        • Kasabova M
        Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung diseases.
        Biological Chemistry. 2015; 396: 111-130https://doi.org/10.1515/hsz-2014-0210
        • Cocchiaro P
        • De Pasquale V
        • Della Morte R
        • Tafuri S
        • Avallone L
        • Pizard A
        • et al.
        The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease.
        Front Cell Dev Biol. 2017; 5: 114https://doi.org/10.3389/fcell.2017.00114